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Multitarget Moments and Their 
Application to Multitarget Tracking 

Ronald Mahler 
Lockheed Martin Tactical Systems, MS U2S25, 3333 Pilot Knob Rd, Eagan MN 55121, USA 

ABSTRACT 

The concept of a "statistical moment" has played a fundamental role in practical single-target tracking. The optimal 
tracking approach, the recursive Bayes fiher, propagates the entire posterior density through time. Because this filter 
is computationally daunting, most practical single-target tracking approaches assume that signal-to-noise ratio is 
large enough that the posterior is approximately characterized by its low-order moments. For example, the alpha- 
beta-gamma filter propagates the first-order moment (the posterior expectation) whereas the extended Kalman filter 
(EKF) additionally propagates a second-order moment (the posterior covariance). Until recently, the possibility 
of an analogous multitarget approach seems to have been ignored—apparently for lack of a systematic statistical 
foundation for multitarget problems. In two recent papers, I introduced multitarget moment statistics of arbitrary 
order and developed a Bayes filtering theory for the first-order multitarget moment, the "probability hypothesis 
density (PHD)." In this paper I continue this line of investigation. I will describe a preliminary implementation of 
the first-order filter. I wiU introduce the concept of multitarget posterior covariances of arbitrary order. Using them 
I will show how a suitable extension of the finite-set statistics (HSST) multisensor-multitarget differential calculus 
can be used to construct multitarget statistical analogs of the EKF. 

1. INTRODUCTION 

Progress in single-target tracking has relied upon the fundamental concept of the moment statistics of a random 
track-vector. The optimal approach to single-target tracking, the recursive Bayes filter, propagates the entire pos- 
tenor density through time. Because real-time implementation of the Bayes filter is extremely challenging most 
practical smgle-target tracking approaches assume that SNR is large enough that the posterior is approximately 
characterized by its low-order moments. For example, the alpha-beta-gamma filter propagates the first-order mo- 
ment (the postenor expectation) whereas the extended Kalman filter (EKF) additionally propagates a second-order 
moment (the posterior covariance). 

Until recently, the possibility of an analogous approach has apparently been overlooked as a multitarget tracking 
strategy The reason for this has been, apparently, the lack of a systematic engineering statistics for multitarget prob- 
lems Even more surprisingly this has been the case even though a rigorous statistical foundation for multi-object 
problems, called point process theory, has been in existence for decades. Specifically: How would one even go 
about defimng first- and second-order multitarget moment statistics, let alone developing a rigorous Bayes filtering 
theory for them? As we shall see in a moment, naive approaches to defining such statistics fail. Consequently, one 
must turn to more systematic, theoretically-grounded approaches. 

In two recent papers [27], [17], I resumed a line of investigation initiated in the book Mathematics of Data 
Fusion [9, pp. 168-170]. I introduced multitarget moment statistics of arbitrary order called "factorial-moment 
densities" and, m particular, the first-order moment also known as the "ProbabiUty Hypothesis Density" or "PHD" 
I developed a Bayes filter for the PHD, using a random-set formulation of point process theory called "finite-set 
statistics (FISST)." I showed that this first-moment filter is a multitarget statistical analog of the alpha-beta-gamma 
filter. That is, it is based on the assumption that signal-to-noise ratio is so high that the multitarget posterior density 
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is approximately characterized by its PHD. (Equivalently, it is based on the assumption that the multitarget track- 
process is approximately Poisson.) In this paper I continue this line of investigation. I will describe a preliminary 
implementation of the PHD filter. I will introduce the concept of multitarget posterior covariances of arbitrary order, 
and show how the FISST multi-target differential and integral calculus can be used to construct these moments. I 
will also show how a suitable extension of this calculus can potentially be used to construct multi-target statistical 
analogs of the Kalman filter (KF) and extended Kalman filter (EKF). 

All of this, in turn, depends on a firm grounding in point process theory. Progress in single-sensor, single-object 
tracking has also been greatly faciUtated by the existence of a systematic, rigorous, and yet practical engineering 
statistics that supports the development of new concepts in this field. By "engineering statistics," I mean the vast 
body of applied mathematical techniques surrounding the following "Statistics 101" concepts that most tracking 
engineers learn as undergraduates: random vectors; probability-mass and probability-density functions; differential 
and integral calculus; statistical moments (expected value, covariance, etc.); optimal state estimators; optimal signal- 
processing filters; and so on. Given the importance of such concepts in the single-sensor, single-object realm, one 
would expect that multisensor, multi-object tracking would abready rest upon a similarly systematic, rigorous, and 
yet practical engineering statistics. This has not been the case despite the existence of point process theory, and there 
appear to be two major reasons for the gap. First, theoretical development in the multitarget tracking community has 
been focused primarily on immediate engineering applications rather than on systematic, over-arching foundations. 
Second, neither of the primary mathematical formulations of point process theory—random measure theory [6], 
[15] and stochastic geometry [48], [30]—^have been well-suited for reduction to the practical "Statistics 101" form 
favored by tracking engineers. This is partly because random measure theory and stochastic geometry both tend to 
be somewhat impenetrable to even mathematically sophisticated engineers.* It is also partly due to the fact that point 
process theory has been directed not at tracking but, rather, towards those applications which gave birth to it: cueing 
theory, image signal processing, statistical theories of gases, Uquids, and particles, etc. What has been missing has 
been an "engineering friendly" formulation of point process theory: "finite-set statistics"(FISST), the multisensor- 
multitarget engineering statistics that I introduced in 1994 . FISST is essentially a judicious, engineering-oriented 
distillation of point process and related concepts drawn from stochastic geometry, random measure theory, modem 
statistical physics, and expert-systems theory (see section 2). FISST is "engineering friendly" in that it is geometric 
(it treats multi-object systems as visualizable random images) and in that it preserves and extends the "Statistics 
101 "formalism that tracking engineers already understand. 

1.1. Statistical Moments in Single-Target Tracking 

With the clarity of hindsight, one can recognize that single-target tracking has taken the following conceptual (if not 
actual historical) trajectory. If real-time computational tractabiUty were not an issue, optimal single-target trackers 

f-V would be implementations of the following Bayesian discrete-time recursive nonlinear filtering equations [13], [42], 
'"'[2,pp. 373-377], [14, p. 174]: 

fk-\-\\ki?^h+l\Z ) / /fc+i|fc(xfc+i|xfc) /fc|fc(xfc|Z'=)dXfc 

/fc(Zfc+l|Xfe+l) /fc+l|ft(Xfc-fl|Z^) 

/fe+i(z,+i|Z'=) 

argsup fk\k{AZ^) 

(1) 

(2) 

(3) 

^i*,^*: ^^ ^he target state variable at time-step k and z^ is the observed measurement at time-step k; 
"\~*E ■ ——  

^l^ample, at the 1998 GTRI/ONR Workshop on Tracking and Sensor Fusion [41], A. Skorokhod gave a presentation on 
^..asure-based multitarget tracking [38] that does not seem to have been well understood. 
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(2) fk\f.{yik\Z'') is the Bayes posterior distribution conditioned on the data-stream Z^ = {zi,..., Zfc}; 

(3) /;;(z|x) is the sensor likelihood function at time-step k; 

(4) /fc+i|fc(xjt+ilxfc) is the target Markov transition density that models between-raeasurements target motion; 

(5) /fc4.i|fc(xfc+i|Z^) is the time-prediction of the posterior fk\f;{'^k\Z'') to time-step A; -I-1; 

(6) fk+i{zk+i\Z^) = J fk{zk-\-i\yk+i) fk+i\kyk+i\Z'')dyk+i is the Bayes normalization constant; and 

(7) ±k\k is the Bayes-optimal maximum a posteriori (MAP) estimate of the target state at time-step k. 

Real-time computational implementation of equations 1, 2, and 3 is extraordinarily difficult in general. So, 
instead, a historically important strategy has been to assume that signal-to-noise ratio is high enough that the higher- 
order moments of the evolving track-vector x^i^ can be neglected. In this case, the first- and second-order moment 
(i.e., the posterior expectation vector and the posterior second-moment matrix) 

Xfc|fc= /x/fc|fc(x|Z'=)dx,        Mk\k = j^^ fk\k{AZ^)d-x. (4) 

are always approximate sufficient statistics: 

fk\k{AZ^) = fk\k{A^k\k,Mk\k)=Np   U-±k\k) 

where "■^" denotes matrix transpose and where Npj^.^{x. — ±k\k) denotes a multi-variate Gaussian distribution with 

covariance matrix Pk\k = Mk\k — ^k\k^^\k- We can then propagate ±k\k and Mk\k instead of the full distribution 
fk\k{^\Z^) using an extended Kalman filter. If SNR is so high that the second-order moment can be neglected as 
well, then 

fk\k{^\Z'')^fk\k{^\±k\k) (5) 

and we can propagate ±k\k alone using an even computationally simpler constant-gain Kalman filter—e.g., the 
a-/3-7 filter. 

1.2. The Failure of Naive Multitarget Moments 

Given such hindsight, someone new to multitarget tracking might surmise that the field has, at the conceptual if not 
the historical level, followed a similar trajectory. That is, he or she might presume that one would (1) begin with 
a theoretically systematic framework, namely propagation of a multitarget posterior density fk\k{X\Z^''^) using 
a multitarget analog of equations 1 and 2; and (2) transcend computational difficulties by assuming that SNR is 
high enough that one can propagate first- and/or second-order moments of the evolving multitarget track-set Xk\k, 
instead of the full distribution fk\kiX\Z^''^). In reality, multitarget tracking has taken a quite different course. The 
concept that multitarget tracking should be theoretically grounded on a multitarget analog of equations 1 and 2 is 
apparently itself of very recent vintage (see section 3.6). The idea of constructing lower-order statistical moments for 
a multitarget system, and using them as the basis for multitarget tracking algorithms, seems to have been overlooked 
entirely. This, in turn, appears to be attributable to the lack of a systematic engineering statistics for dealing with 
multitarget problems, similar to the statistics that has long been available for single-target problems. 

In particular, how would one even go about defining first- and second-order multitarget moment statistics? It 
is easy to see that a naive approach fails [22, p. 41], [24], [25]. The most obvious and direct way of defining the 
first-order moment of a random track-set r^i^ at time-step k would be to compute its expected value E[r;i;|fc]. 
Suppose that we are in one dimension and that fk\k{^) is the probabiUty that r^ifc = 0 (no targets), fk\k{^) is 
the likelihood of the event T^k = {x} (single track with state x), fkiki^U^i) is the likelihood of the event 
Tfcifc = {x\,X2} (two targets with states xi^x^), and so on. If the expectation exists, it must have the form 

W^k\k\ = 0 • /fc|fc(0) + l{x}- fk\k{^)dx + / {xi, X2} ■ fk\k{xi,X2)dxidx2 + ... 
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Such an integral cannot even be defined unless, at minimum, the multitarget state space is a vector space—in partic- 
ular, unless it has a concept of addition/subtraction. But how does one add the zero-target state 0 to a single-target 
state {x}l Or a single-target state {x} to a two-target state {xi, X2}? As a specific example, let: 

r 1/2 if     X = 0 
fk\k{X)={   lNA^-1)   if   X = {x} 

[ 0 if    |X|>2 

where iV^2(x) is a normal distribution with a variance cr^ that has units fcm^. The expectation would then be 

E[rfc|fc] = 0 • /(0) + Jx f{x)dx = -(0 -f- Ikm) 

Notice that, at minimum, we have a units-mismatch problem: we are asked to add the unitless quantity 0 to the 
quantity 1 km. Even if we assume that the continuous variable x is discrete so that this problem disappears, we still 
must add the quantity 0 to the quantity 1. If 0 4-1 = 0 then 1 = 0, which is impossible. If 0 -f-1 = 1 then 
0 = 0, so the same mathematical symbol represents two different states (the no-target state 0 and the single-target 
state X = 0). The same problem occurs if we define 0 4- a = 6a for any real numbers a, ba since then 0 = &„ - a. 

These difficulties persist even if we assume that the number of targets is known a priori. For example, suppose 
that we have a two-target system with two-target distribution 

fklki^u^2) = \N^<^I - xi)N^2{x2 - X2) + -^K^ixi - xi)N^2{xi - X2) 

where the targets are highly separated: a^ is small and xi is much larger than X2. Our intuition leads us to 
believe that the multitarget expectation of this distribution should be E[rfc|fc]= {xi, Sz}. The naive expectation of 
the distribution fk\k{xi,X2), however, yields E[rk\k]= I {xi + X2). This is because it does not take account of 
the fact that fk\k{xi,X2) is the distribution of a mu/ritorge? system and, therefore, that its symmetry fk\k{^hX2) = 
fk\k{x2,xi) provides no information about this system other than the fact that it is multitarget. 

1.3. First-Order Multitarget Moments and Filtering 

By a track-valued multitarget expectation I mean a set of specific tracks of the form E[r]= {xj^j;^,..., ±^jj. The 
proper definition of the track-valued multitarget expectation E[rfc|fc] of a random track-set is a problem that currently 
resists solution (see section 3.5). As a result, one has no choice but to construct multitarget moments by first 
specifying some function 0 that transforms multitarget state-sets X = {xi, ...,Xn} into elements 4){X) of 
some suitably well-behaved vector space. The transformation 0 should be one-to-one and it should transform 
set-theoretic operations into corresponding vector-algebra operations—for example, h{X U Y) = h{X) + h{Y) 
whenever X n Y = 0. In this case we can compute m<ii>ecr first-order moments of the form E[/i(rfc|fc)] that will 
themselves be elements of this vector space. Two obvious candidates are the following [9, p. 179]: 

/i({xi, ...,x„}) = 5x1 + - + '5xn,        Ki^i, ...,Xn}) = Axi + ... + Ax„ 

:^i where 6^{y) is the Dirac delta density concentrated at x and where Ax is its corresponding probability-mass 
^''^ function, i.e. the Dirac measure  A^{S) = J^ S^{y)dy = 1  (if x € 5) and  = 0  (otherwise).   In the first 

[>case E[/i(r;.n.)]  will be a density function Dk\k{y) and in the second case it will be the measure Dk\k{S) = 
" 'js -Dfc|fc(y)dy corresponding to this density. 

^%^ "turns out, Dk\k{y) and Dk\k{S) have long been recognized as useful statistical moments in point process 
f}i°^' where they are variously known as the expectation, mean, or first factorial-moment density resp. measure. I 
' '■"* descnbed them four years ago in the book Mathematics of Data Fusion [9, p. 168-170]. There, I also showed 
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that Dk\k{y) is the same thing as the probability hypothesis density (PHD), a multitarget tracking and evidence- 
accumulation technique proposed in 1993 by M.C. Stein and C.L. Winter [46]. In two recent papers [27], [17] I 
derived a recursive Bayes filter for the PHD. This filter is based on a multitarget analogy with equation 5. That is, 
signal-to-noise ratio is assumed to be so high that the PHD is an approximate sufficient statistic, 

and consequently that we can propagate Dk\k rather than the full multitarget posterior distribution fk\kiX\Z^^^). 
This work is described more fully in section 3. 

Engineers tend to react with puzzlement to the idea that the first moment of a random multitarget track-set r^i ^ is 
a density function, namely the PHD £>jt|fc(x|Z(*=)). What they naturally expect to see is a track-valued expectation. 
So, what exactly is the PHD? Intuitively speaking, just as the value of the probability density function /x(x) of a 
continuous random vector X provides a means of describing the zero-probability event Pr(X = x), so the PHD 
Dkiki^Z^''^) provides a means of describing the zero-probability event Pr(x € F^k)-^ In other words, it is the 
total posterior likelihood that the multitarget system contains a target that has state x, and so is the total probability 
density that accrues to the hypothesis x (and hence the name "probability hypothesis density"). Consequently, 
-Dfc|fc(x|Z(*=)) will tend to have maxima approximately at the locations of the targets. Since the expected number 
of tracks Nk\k = /-Dfc|fc(x|Z('^))dx can be computed directly from the PHD, multitarget track-estimation can be 
accomplished by searching for the [N^,,] highest peaks in the PHD, where [x] denotes the nearest-integer function. 

1.4. Multitarget Moments, Covariances, and Filtering 

The PHD filter summarized in section 1.3 makes use only of the first-order multitarget moment statistic. It is 
natural to ask whether second-order statistics can be applied to multitarget systems. Can we propagate a second- 
order approximation of the multitarget posterior density (i.e., the PHD and a multitarget covariance) instead of the 
multitarget posterior itself? Can we expand the multitarget likelihood function and multitarget Markov density in 
some kind of "multitarget Taylor's series"? If so, we could potentially produce multitarget analogs of the Kalman 
filter and the EKF. 

Another purpose of this paper is to continue the line of investigation begun with the PHD filter, and try to 
determine whether or not it is possible to construct multitarget analogs of the Kalman filter or extended Kalman 
filter (EKF). As a beginning, in 1997 I also identified multitarget moment statistics of higher order and showed that 
they are identical to well-known point process moments called "factorial moment densities" [9, p. 168-170]. 

Results in this direction, summarized in section 4, are prehminary. At this time, a computationally tractable 
"multitarget Kalman filter" based on second-order multitarget moment statistics does not appear to be imminent. 
However, it appears that it might be possible to develop a multitarget analog of the EKF, though the potential 
computational practicality of such a "multitarget EKF' remains to be seen. This work is reported in section 4. 

1.5. Organization of the Paper 

The paper begins, in section 2, with a short but systematic introduction to point processes (section 2.1), finite-set 
statistics (section 2.2), and the relationship between the two (section 2.3). Section 3 introduces the multitarget 
moment density function (section 3.1), the Bayes multitarget first-moment filter (sections 3.2 and 3.1), and a pre- 
liminary implementation of this "PHD filter" (section 3.4). The section concludes with a brief discussion of an 
open research question (how to define track-valued rather ihm function-valued muhitarget first moments, section 
3.5), and a summary of related research (section 3.6). Section 4 explores the possibility of extending this line of 
reasoning to second-order multitarget moments. Possible multitarget analogs of the Kalman filter and the EKF are 

■tOne consequence of this fact is that the PHD is the same thing as a fuzzy set of tracks when target state space is discrete [9 
p. 169], [27, p. 108], [17, Section 2.5]. 
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explored in sections 4.2 and 4.4, respectively. Mathematical proofs have been relegated to section 5; conclusions 

may be found in section 6. 

2. MULTI-OBJECT STATISTICS 

The purpose of this section is to summarize the elements of point process tiieory needed for tiiis paper. I describe 
point process theory in section 2.1. In sections 2.2 and 2.31 summarize HSST and clarify its relationship with more 

traditional formulations of point process theory. 

2.1. Point Processes and Functional Calculus 

Randomly varying, multi-object ensembles are a basic feature of multitarget tracking. The ensemble Z of ob- 
servations collected from a multitarget system is a set of randomly-varying observation vectors, the number of 
which is itself random. If we take a Bayesian viewpoint, tiien the ensemble X of target-tracks also is a set of 
randomly-varying objects (state vectors), the number of which is itself random. Point processes are the foundation 
for representing stochastic systems that, like these examples, consist of randomly varying objects that randomly vary 
in number The purpose of this section is to provide a short summary of this theory. This summary is nonstandard, 
however, in that it borrows from and integrates the practice not only of statisticians and stochastic geometers, but 
also of physicists and of expert-systems theorists (most notably, I.R. Goodman). 

In tiiis section I define point processes (section 2.1.1) and two otiier basic concepts: ihQ probability generating 
functional (section 2.1.2) and iht functional derivative (section 2.1.3). Then I define the basic statistical descnptors 
of point processes: Janossy densities (the multi-object analogs of probabiUty densities; section 2.1.4), factorial 
moment densities (the multi-object analogs of moments; section 2.1.5), md factorial cumulant densities (the multi- 

object analogs of covariances; section 2.1.6). 

2.1,1. Simple point processes (finite random sets) 

There are many ways of defining point processes. Let Ay (5) be the "Dirac measure," defined as Ay (-5) = 1 if 
y e5 and Ay(5) = 0 otherwise, where 5 is some space O of objects (e.g., states or measurements). Let 5y(x) 
denote the density function of Ay (5), i.e. the Dirac delta function concenttated at the point y. Finally, let V be a 
randomly varying finite set of objects and <5r(x) = Eyer ^y (x) the random density function which consists of the 
sum of the Dirac delta functions concentrated on these objects. Then 

f 

Nr{S) = J]Ay(5) = j Sr{^)d^ =\rr)S\ 
yer -^^ 

(6) 

is called a "random counting measure" because it counts the randomly varying number |r n 5| of objects in T that 
are contained in the region SCO. All of the three following items have been known for decades [48, p. 100-102], 
[1], [39], [36] to be equivalent and interchangeable definitions of a (simple) multi-dimensional point processh 

1. the random finite subset T'} 

2. the random measure Nr{S) or its corresponding random density function (5r(x). 

^Pomt processes can also be defined as random variables on unions of vector spaces [6, p. 121]. Though such a formulation 
?,'/'■   .  ™ght seem intuitively appealing, it is so mathematically restrictive that it is rarely used. 
C'^i ^^°^^ general approaches allow the random subset T to be countably infinite but locally finite, i.e.  |r nK\<oo for any 

""^^r ^°""^ed subset JC. We will not follow this practice here. 
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Not all random multi-object systems of interest are point processes.   Let Ay G R+ be a family of random 
positive real numbers indexed by y G O. Define the random density function 

5>i,r(x) = J]^y(5y(x) (7) 
y€r 

and its associated random measure NA,r{S) = Eyer ^y^yC-^)- If the ^(x) were random positive integers then 
NA,r{3) would be a general point process; otherwise, it is called a compound process. Compound processes are 
nevertheless mathematically equivalent to simple point processes (finite random sets) on the product space M+ x O 
[15, pp. 5, 16, 22]. In particular, there is a sequence of notational correspondences 

ai<5xi + ... + a„5x„ ^=^ (5(aj,xi) + - +<5(a„,x„) <^=^ {(ai.xi),..., (ai,xi)} (8) 

As we will see later (section 4.4), each of these three notations can be interpreted as & finite collection of point 
object-clusters, each such point object-cluster (a, x) consisting of an average number a of objects all co-located at 
X. 

2.1.2. Probability generating functionals 

In single-object statistics, the statistical behavior of a random number Y is often described by generating functions 
such as the characteristic function   <f>Y{y) =E[e^!/^], the moment-generating function   Myiy) =E[e2'^)],   the 
factorial moment-generating function C?y(y) =E[y^)], and so on [4, p. 83], [6, Chapter 1].  These functions are 
called "generating functions" because probability functions and various kinds of moments can be generated from 
their iterated derivatives, e.g. (dWy/dyJ)(0) =E[yj]. In like manner, the statistical behavior of the point process 
r, Nr{S)  or Sv{x) is described by various kinds of generating fiinctionals.   My emphasis in this paper will be 
on a point-process analog of the factorial moment-generating function called the probability generating functional. 
Given a function /i, this is (if it exists) the expected value of the product of all /i(x) taken over all elements x of 
T: 

Gr[h] = E HMX) 
.xer 

(9) 

In mathematical point process theory h must be a very restricted type of function, to ensure that the expectation 
exists for very general point processes T [6, p. 141], [48, p. 116], [36, p. 13]. However, I will follow the 
practice ofphysicists in assuming that F is sufficiently "nice" that GrW can be defined for more general functions 
h—in particular, functions that incorporate Dirac delta functions <5y(w) [40, p. 190]. The probability generating 
functional has the property that Gr,,...,r„ [h] = Gr, [h]--- C?r„ [h] if Ti,..., r„ are statistically independent. 

2.1.3. Functional derivatives 

For any functional F[h] and any function g define 

dF F[h + eg]-F[h] 5"F   \ ,       d d 

if the limit exists. In mathematics, this is called a "Gateaux derivative." Like physicists, I assume that F is 
sufficiently nice that the transformation g ^^ ^[h\ is continuous and linear for any fixed h. In this case 
It IS also known as a "Frechet derivative" and can be computed using the usual "tum-the-crank" rules of freshman 
calculus. Provided that they exist, the iterated Frechet derivatives {d^'F/dg^-■ ■ dg^) [h] are linear in each argument 
gi,...,gn- If Frechet derivatives of all orders exist, then F can be expanded in a Taylor's series [40, p. 190] 

i times 
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t ' 

\,, 

4fr 

Because of continuity and linearity and since 9 = Jg- Sydy (that is, ^(w) = J g{y)5y{-w)dy for all w), a 
physicist would write 

dF P dF fw = /.(y)f[''l'iy 
and then point out that general Frech^t derivatives are completely specified by the Frechet derivatives 

nssT physics mathematics 

S^F 

5yi ■ • • 5y„ W 
6"F 

5h{yi) ■ ■ ■ Sh{yn) 
[h] 

5"F 
85. 'yi •S(5. 

-[h] (12) 
yn 

These are known in the physics literature 2iS functional derivatives [40, pp. 173-174]. Equation 12 displays three 
different notations for these derivatives: the ones preferred by mathematicians (rightmost) and physicists (center), 
and the less cumbersome abbreviated physics notation used in FISST and throughout this paper (leftmost). 

2.1.4. Janossy densities 

Given a list yi,...,yn of vectors, the iterated functional derivatives 

ir,n(yi,-,yn) 
5yi • • • 5yn 

[h] (13) 
ft=0 

are the Janossy density functions [6, pp. ni-m] of V. The family of Janossy densities of a point process T is 
the multi-object analog of the probability density /Y(y) of a random vector Y. Thatis, just as/Y(y) describes 
the likeUhood of occurrence of the zero-probability event Y = y, so ir,n(yi, -lyn) describes the likelihood of 
occurrence of the zero-probability event T = {yi, ...,yn}. The Janossy densities of simple point processes are 
completely symmetric in all arguments, vanish whenever yi = yj for some 1 < i 7^ j < n [6, pp. 134, Prop. 
5.4.IV], and are jointly normalized in the sense that Xl^o ^Jn(yi, -, yn) = 1- The relationship between the 
probabiUty generating functional and the Janossy densities can be found by expanding Gr[h] in a Taylor's series 
expansion (equation 11) around /i = 0 [40, p. 190], [36, p. 15], [6, pp. 142, 148]: 

°°   1   f 
Gv[h] = ^—^j KYI)■ ■ ■ KVn)ir,n(yi,-,yn)dyi• • • dy„ 

n=0    ■ -^ 

(14) 

2.1.5. Factorial moment densities 

In ordinary single-target statistics, moments of arbitrary order of a random vector Y with distribution/Y(y) are 
the tensors (multi-argument Unear functions): 

where (yi,y2) is the usual scalar (i.e, dot) product of vectors. The multitarget moments of a point process T 
multi-argument non/mear functions. Given a list yi,...,yn of vectors, the iterated functional derivatives 

mY,n(yi, -.yn) = / (yi,y) • • • (yn,y) /Y(y)^y 

are 

"Tr,[ni(yi,"-,yn) 
(5"GT 

5yi • • • 5y, 
■[h] (15) 

71=1 

^^^^e^factorial moment densities of the point process F [6, pp. 130, 222], [15, p. 11], [48, pp. Ill, 116].  They 
' "^^ ^Iso be shown to be the expected value 

"^r,[n](yi,-,yn)=E J2 '5yj(Wl)---(5y„(Wn) 
Wif...5iw„6r 
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where the summation is taken over all n-tuples (wi,..., Wn) of distinct objects [48, p. 38], [15, pp. 10-11]. 

Factorial moment measures are related to the Janossy densities and the probability generating functional by the 
equations [6, pp. 133, 142,149, 222], [36, pp. 11,17]: 

°°   1   /■ 
"^r,[n](yi.-,yn)     =    J])t!  /^r,[n+fc](yi,-,yn.Wi,...,Wfc)dwi---dWfc (16) 

ir,[n](yi,->yn)     =    X^^"-rf-   / "Xr,[n+fc](yi,-".yn,Wi,...,Wfc)dwi---dWfc (17) 
fc=0        '      '' 

Gr[i + h] = 5])TT / ^(yi)'""Myfc)"ir,[fci(yi.-,yfc)c^yi---cJyfc (is) 

If n = 0 then mrjo] = 1; whereas if n = 1 then we get the PHD described in section 1.3: mrji](y) = Dr{y). 
It is clear from equation 16 that mr,[„](yi,...,yn) = 0 if y^ = y^. for some i y^ j (since jr,[n](yi) ••■,yn) has 
the same property). 

2.1.6. Factorial cumulant densities 

In ordinary single-target statistics, the covariance moments of arbitrary order of a random vector Y are the tensors: 

CY,n(yi, -.yn) = / (yi - y,y) • • • (yn - y,y) /Y(y)c^y 

where y is the expected value of Y. The multi-object analog of these quantities are the iterated functional 
derivatives 

. .       ($"logGr r.,1 
cr,[n](yi,-.yn)=gy^...gyjfe] 

which are called the factorial cumulant densities of F [6, p. 146]. They are related to the probability generating 
functional by [6, pp. 224] 

(19) 

°°   1   /■ 
logGr[l + h] = ^-r. / ^(yi)• • • ^(yfc) cr,y](yi,-,yk)dyi• • • dyjt (20) 

If ra = 0 then cpjo] = 0; and if n = 1 then Cr,[i](y) = "^r,[i](y) = -Dr(y)- If n = 2 then we get ihefactorial 
covariance density [6, p. 146]: 

cr(yi,y2)  =  cr,[2](yi,y2) = -^^^|^W 
*«r(i)^(,)^^(y 

h=i ^y2       <5yi Syi6y2 

=   "ir,[2i(yi.y2)-I>r(yi)-Dr(y2) (21) 

Equation 21 can be generalized to statistics of all orders, since the factorial cumulant densities can be written as 
combinatorial sums of products of the factorial moment densities [6, p. 147]. 

2.2. Finite-Set Statistics (FISST) 

As previously noted and as I explain more fully in this and the following sections, FISST is essentially a judicious, 
engineering-oriented distillation of point process and related concepts drawn from stochastic geometry, random 
measure theory, modem statistical physics, and expert-systems theory. The theoretical basis of FISST has been 
described in the book Mathematics of Data Fusion [9, Chapters 2, 4-8]. The engineering motivations underlying 
FISST have been summarized in the technical monograph An Introduction to Multisource-Multitarget Statistics and 
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Its Applications [22] and elsewhere [23], [21]. Rather than repeating this material here, I direct the reader to 
those sources. Instead, in this section I summarize the basic relationships between HSST and the (nonstandard) 

formulation of point process theory described in the previous section. 

I begin with basic concepts: the belief-mass function (section 2.2.1), set derivative (section 2.2.2), multi-object 
density function (section 2.2.3), and set integral (section 2.2.4).   The first three are the FISST counterparts of the 
probabihty generating functional, functional derivative, and Janossy densities, respectively. I then turn to engineer- 

• ing concepts: the multisensor-multitarget likelihood function (section 2.2.5), multitarget Markov transition densities 

(section 2.2.6), and multitarget posterior densities (section 2.2.7). 

2.2.1. Belief-mass function 
In single-sensor, single-target problems, tracking engineers typically do not use generating functions to describe a 
random vector Y, but rather the probability-mass function py{S) = Pr(Y G S) or its density function /v(y - 
In like manner, HSST describes a point process T not with its probability generating functional (section 2.1.2) but 
rather its "belief-mass function" Pr{S) = Pr(r C S)\ Th^ beUef-mass function is the multi-object analog of the 
probability-mass function. Its value/3r (5) is the total probability that all objects m T will be contained in 5^ The 
belief-mass function and probabihty generating functionals are closely related. For any closed subset 5, let l^Cx) 
be the function defined by l5(z) = 1 if z 6 5 and ls(z) = 0 otherwise. Then the belief-mass function is the 
restriction of the probabihty generating functional of T to these characteristic functions (see section 5.1): 

Pr{S) = Gr[ls] 

2.2.2. Set derivative 
Let Y = {yi,..., Yn}- Then the HSST "set derivative" of a belief-mass function A^ of a finite-random set (point 

process) T is, if it exists. 

A   ±l3r{S)^    lim^ 
MS^Ey)-Pv{S) 

Sy 

5yi 

X(Ey)\0 KEy) 

Syn 
Pr{S) 

^-§{S)   ^   MS) 
(22) 

where Ey is a small region that converges to the singleton set {y} and A(Ey) is its hypervolume (i.e.,Lebesgue 
measure) The set derivative can be thought of as a functional derivative. That is, if both the respective set derivatives 

and functional derivatives exist, then they are related by (see section 5.2): 

^(5)--^[l^] W'^^^-Sy, 
S^Gv 

■Syn 
[ls] = 

a"Gr 
86 'yi ■86- 

-[Is] 
'yi 

2.2.3. Multi-object density functions 
Let r be a simple point process (i.e., random finite set). Wc constiuctthe multi-object density fiincHon /r(X) of 
r by bundling together the Janossy densities of T (section 2.1.4) into a single density function defined on the space 

offinite random sets: 
6"Gr 

/r(>')=Jr,n(yi,-,yn) = <5yi---<5yn^ ^     <5y ̂ «=f« 
""^stochastic geometry and theoretical statistics, /3r(S) is known as a specific kind of "capacity measure." If T is 
nonempty (i e Pr(r ^^ 0) = 1) then /3r(5) is a "belief function" in the sense of the Dempster-Shafer theory. Because ot 
this, the HSST formulation of point process theory encompasses Dem^jster-Shafer, fuzzy logic, and rule-based expert systems 
approaches. 
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where Y = {yi,..., yn}. That is, the multi-object density can be constracted as a set derivative. Also, Y" = 0 
indicates that no object is present, Y = {y} indicates that onB object with state y is present, ^ = {yi, y2} indicates 
that two objects with states yi ^ y2 are present, and so oil. The multi-object density fr{Y) has the form 

/p(0) = likehhood that no objects are present 

/r({y}) = likelihood of one object x 

/r({yi) •", yn}) = likelihood of n (distinct) objects xi,..., x^ 

2.2.4. Set integrals 

Given any function f{Y) of a finite set variable Y, the set integral is defined by 

/ f{Y)6Y = E ^ / ^ /({yi. -, yj})dyi ■ ■ ■ dyj (23) 
Js ^f- JS X ... X S 

j limes 

for any measurable set 5, where by convention the j = 0 term in the infinite sum is /(0). If / = /r for some 
point process F, then for each j the f^ term in this sum is the probability ppj = Pr(|r| = j) that F contains 
F objects. Given this, equation 14 can be rewritten as 

Gr{h] = Jhy-fr{Y)6Y 

where hX = Yly^Y^iy)- Consequently, if/r(y) is the multi-object density function of F, then J fr{Y)6Y = 
Gr[l] = 1. Substituting /i = I5 yields 

MS) = Gr[ls] = J l'sfr{Y)6Y = J fr{Y)5Y 

The set integral is inverse to the set derivative, in-the sense that 

KS) = ^ ^mSY, f{Y) =y^l fiW)SW 
s=<b 

2.2.5. Multitarget likelihood functions 

Let Sfc be the random observation-set generated by a multitarget system with multitarget state X at time-step k 
and pk{S\X) ='Pi{T,kC, S\X) its belief-mass function. Let Z = {zi,...,Zr7i} be a particular such observation- 
set. Then the multitarget likelihood function fk{Z\X) of E^ is the multi-object density function of Efc. That is, 
it is constructed by bundling the family of Janossy densities of Sfc into a single density function defined on finite 
sets Z of measurements. In particular, it is an iterated functional derivative of the probability generating functional 
of Efc [22, p. 30]: 

/(Z|X)=is„n(zi,...,z„) = ^(0|X) 
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2.2.6. Multitarget Markov transition densities 
Likewise let Let Tk+nk be the random track-set at time-step k + 1 generated by a multitarget system with 
multitarget state X at time-step k. Let f3,^,^,{S\X) = Fx{rk+iik Q S\X) be its belief-mass function and let 
Y = {yi,...,yn} be a particular track-set at time-step k + 1. Then the multitarget Markov density fk+i\k{Y\X) 
for r^+nfc is the multi-object density function of Ffc+iifc—i.e., the family of Janossy densities of the point process 
Tfc+iifc, bundled together into a single density defined on finite sets. In particular, it is a set derivative of the 
belief-mass function I3k+i\k [22, p. 30]: 

fk+i\kiY\x) = ir,+,|„n(yi, ...,yn) = ^^(01^) 

2.2.7. Multitarget posterior densities 
Let Z(*=) = {Zi,...,Zk} be a time-series of multisource-multitarget observation-sets Zj collected from the 
randomly-varying track-set T^k of a multitarget system at time-step k. The Janossy densities of this point process 
(random finite set) are, when bundled together into a single density function defined on all finite sets of target states, 
the "multitarget posterior density function": 

where ^fca(5|Z(^)) = Pr(rfc|fc C S) is the behef-mass function of T^k- In other words, X = 0 indicates that no 
target is present, X = {x} indicates that one target with state x is present, X = {xi, xa} indicates that two targets 
with states xi 7^ X2 are present, and so on. So, 

fk\kmz^^^) = posterior likehhood that no targets are present 

/^l^({x}|Z(^)) = posterior likelihood of one target with state X 

/^|j;.({xi, ...,x„}|Z('=)) = posterior hkeUhood of n targets with states xi,...,Xn 

2.3. FISST vs. Conventional Point Process Theory 
Given the existence of these relationships between HSST and the more usual versions of point process theory, what 
is the advantage of using HSST? When I published Mathematics of Data Fusion in 1997,1 argued [9, pp. 71-72, 
170] that nSST offered engineers certain advantages over a multi-object statistics based on random measures. First, 
it is explicitly geometric in that the random variates in question are actual sets of observations (visualizable random 
images) rather than abstract integer-valued measures. Second, because FISST provides a systematic foundation for 
both expert systems theory (fuzzy logic, Dempster-Shafer theory, rule-based inference) and multisensor, multitarget 
estimation and filtering, it permits a systematic and mathematically rigorous integration of these two quite different 
aspects of information fusion. Third, systematic adherence to a random set perspective results in a formulation 
of point process theory that is nearly identical to the "Statistics 101" formalism with which tracking engineers are 
already familiar. In subsequent pubUcations [22], [23], [21] I spelled out what this means in greater detail: 

• just as single-sensor, single-target data can be modeled using a measurement model Z^ = hfc(xj;,Wfc), so 
multitarget multisensor data can be modeled using a multisensor-multitarget measurement model—a. randomly 
varying finite set Efc = rfc(Xfc)UCfc(Xfc) where Tk and Ck indicate target-generated and clutter-generated 
observations, respectively [22, pp. 17-20]; 
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• 

just as the single-sensor, single-target likelihood function /j;(z|xfc) can be derived from the probability mass 
function pk{S\xk) = Pr(Zfc G i^lx^) of the measurement model via differentiation, so the true multitarget 
likelihood function fk{Z\Xk) can be derived from the belief-mass function pk{S\Xk) = Pr(Sfc C S\Xk) of 
the multisensor-multitarget measurement model, using the set derivative; 

just as single-target motion can be modeled using a motion model X^+i = $fc(xfc, Vfc), the motion of 
multitarget systems can be modeled using a multitarget motion model—a randomly varying finite set Tk+i = 
^k{Xk, Vfc) that takes account of target appearance and disappearance [22, pp. 21-23]; 

• just as the Markov transition density fk^^ki^k+il^k) can be derived from the probability mass function 
Pk+i\k{S\^k) = Pr(Xfc+i G 5|xft) of the motion model via differentiation, so the true multitarget Markov 
transition density fk+i\k{^k+i\Xk) can be derived from ^k+i\k{S\Xk) = Pv{rk+iik Q S\Xk), by applying 
the set derivative to the belief-mass function of the multitarget motion model; 

• just as simple "turn the crank" rules exist for freshman differential and integral calculus, so similar turn the 
crank rules (sum, product, chain, power) exist for the FISST differential and integral calculus [22, pp. 31-32]. 

Finally, because FISST systematizes these "Statistics 101" parallels between single-object and multi-objects 
statistics, it provides a general engineering methodology for attacking multisource-multitarget data fusion problems: 

• Almost-Parallel Worlds Principle (APWOP): Nearly any single-sensor, single-target concept or algorithm 
can, in principle, be directly translated into a corresponding multisensor, multitarget concept or algorithm 

Since 1994, a long-standing illustration of the APWOP has been the concept of multitarget information measures 
of effectiveness—^for example, the following multitarget generalization of the KuUback-Leibler cross-entropy [9, pp. 
205-209; 295-312], [18], [20], [52], [19]: 

single-sensor, single-target ==> multisensor-multitarget 
i^(/,p) = //(x)log(fg)dx ■—s K{f,9)=Jf{X)log{^^)SX 

Using the APWOP, we simply replace conventional statistical concepts on the left with their FISST multisensor, 
multitarget counterparts on the right. Specifically, the ordinary densities /, g on the left are replaced by the multi- 
target densities /, g on the right; and the ordinary integral J -dx on the left is replaced by a multitarget set integral 
J-SX on the right. 

3. MULTITARGET FIRST-MOMENT FILTERING 

The purpose of this section is to: introduce the concept of multitarget moments of all orders (section 3.1); describe 
a multitarget filtering approach based on propagation of the first-order moment (the "probability hypothesis density" 
or PHD, sections 3.2 and 3.3 ); and summarize performance results for a preliminary implementation of this "PHD 
filter" (section 3.4). As previously noted, the PHD filter described in these sections is a statistical multitarget 
analog of the Q;-/?-7 filter. It sidesteps the computationally intractable problem of propagating the multitarget 
posterior density by, instead, propagating only the first-order moment of that density. This is possible only under 
the assumption that signal-to-noise ratio is relatively high. The PHD filter must be implemented as a computational 
nonlinear filter, using analogs of equations 1 and 2. It tracks targets without making any attempt to associate reports 
with tracks. For more details, the reader is referred to recent papers [27], [17], [29], [7]. I conclude the section 
with an open research problem (how to define track-valued rather than function- or measure-valued expected values, 
section 3.5)—and a short history of Bayes recursive multitarget nonlinear filtering (section 3.6). 
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3.1. The Multitarget Moment Density Function 
Recall that in section 2.1.1 used an iterated functional derivative of the probability generating functional Gr,„ W 
of a random track-set (point process) Vkik to define the Janossy densities jr,|fc,n(xi,...,Xn). Then in section 2.Z 

I bundled these densities together into a single multitarget posterior density function ^i^XlZ^'')) and showed 
that it can be computed as an iterated set derivative of the belief-mass function pk\k{S) of Tk\k- In section 2 1 
I also introduced the concept of the factorial moment densities of a point process. Applying equation 15 to the 
random track-set F^ik, we likewise bundle the factorial moment densities mr„„[n] (xi, ••., Xn) mto a smgle density 
function mfc|,(X|Z(^))definedonafinite-setvariable X = {xa,...,x„} mdcaHitthtmultitargetmornentdensity 

junction of the track-set: 

mfc|fc(0lZ('=)) = 1,       mfc|fc(XlZ«) = mr„„[„i(xi,..., x„) 

From equation 15 it follows that 

m,|.(XlzW) = ^(51ZW) 
s=s 

SPk\k 
sx 

(S|ZW) (24) 

where S is the entire state space. Thus the multitarget moment density can, like the multitarget posterior density, 
be computed from f3k\k using iterated set derivatives. Likewise, equations 16,17, and 18 become 

m.|.(XlzW)   =   j^^J,\k{Y\Z^'^)5Y = j h\,{XUW\Z^^)6W (25) 

H{X\Z^'^)   =    f   (-1)'^' m,\k{Y\Z^'¥Y = j{-ir^ m,„(XUT^lzW)6T^ (26) 

G,i,[l + h]   =   jh^-m,\,{X\Z^'hSX . (27) 

where h^ = Rxex Mx) given X = {xx,..., ^}. Equations 25 and 26 tell us that the niultit^get posterior 
and multitarget moment densities are interchangeably computable from each other. Equation 25 additionally tells 
us that mfc|fc(X|Z('=)) is the marginal-posterior likeUhood that, regardless of how many targets there may be in the 
multitarget system, exactly n of them have states xi,..., x^. 

In particular, the first moment density (or "probabiUty hypothesis density," PHD [46], [9, pp. 168-169]) has the 

form 

D.,(x|zW) = m,„(xiz(^)) = /   /.|.(x|z('=))5X = / A|.({x} u y|zW)6y 

For any measurable subset  5 C S  of state-vectors, the expected number of targets in  S  is [27, p.  106], [17, 

Theorem2], [9,p. 169] 
iV,|, = E[lr,„n5|] = jri?„.(x|zW)dx (28) 

This property characterizes the PHD uniquely.   That is, if 5fc(x) is any other density which gives the expected 
^««,     number of targets in S when integrated over S, then it is (no matter how imaginative the name or notation one might 
%h    assign to it) nothing else but the PHD.  For, since /^5.(x)dx = Js D,^,{^\Z^'^)d^ for all measurable S then 

; WM   9k\k = -Dfcifc almost everywhere. A typical example of a PHD is pictured in Figure 2. 
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3.2. Basic Idea Behind the PHD Filter 

The theoretically optimal foundation for multitarget detection, tracking, and identification is the following general- 
ization of the recursive Bayes filter equations 1, 2, and 3: 

fk+ilkiXk+ilZ^"^)   =   j fk+i\k{Xk+i\Xk) fkik{Xk\Z^''^)5Xk (29) 

,        i7(fc+i)x fk{Zk+i\Xk+i) /fc+i|fc(Xfc-n|zW) 
/fc+i|ft+u^fc+il^'   '; -  f—7^—r^im  '^^^^ 

Jk+l\^k+l\^^ ') 

Xi^Mk+i   =   argsup^A+i„+i(X|Z^+i) (31) 

where [22, pp. 47-49], [9, p. 237-243]: 

(1') Xk is the multitarget state, i.e. the set of unknown target states (which are also of unknown number) and 
Zk is the set of all measurements collected from all targets at time-step k; 

(2') fk\k{Xk\Z^'''>) is a multitarget posterior density at time-set k conditioned on the time-stream Z^''^ = 
{Zi,..., Zk}; 

(3') fk{Z\X) is the multisensor, multitarget likelihood function that describes the likelihood of observing the 
observation-set Z given that the multitarget system has multitarget state-set X; 

(4') fk+i\k{Xk+i\Xk) is the multitarget Markov transition density that describes the likelihood that the targets 
will have state-set Xk+i at time-step k + 1 given that they had state-set at time-step k; 

(5') fk+i\k{Xk+i\Z^''^) is the time-prediction of the multitarget posterior/fc|fc(Xfc|Z('^)) to time-step fc-t-l;and 

(6') /ft+i(Zfc+i|zW) = / fkiZk+i\Y) fk+i\k{Y\Z^''^)SY is the Bayes normalization constant. 

(A short history of Bayes multitarget filtering can be found in section 3.6.) The multitarget filtering equations 29, 
30 and 31 cannot be copied from the single-target filtering equations 1, 2, and 3 in the blind fashion just suggested 
[22, pp. 1-6, 91-93], [21], [25], [24]. For example, 

(?') the direct multitarget generalization of the MAP estimator is not defined in general (and, as previously 
indicated, the multitarget generalization of the posterior expectation still resists definition); -X'^f'Ju;. j is a specially- 
defined multitarget analog of the MAP estimator [22,40-44]; 

(8') the integrals J -SXk and J -SY are set integrals. 

Clearly, if the single-target Bayes filter equations 1, 2, and 3 are already computationally daunting, then the 
multitarget filter equations 29,30, and 31 will be computationally intractable in most circumstances. So, we proceed 
by analogy from the single-target case. There, we assumed that SNR is so high that the posterior is approximately 
completely characterized by its first moment statistic and then propagated ±k\k alone using a constant-gain Kalman 
filter. The idea underlying the PHD filter is to extend this reasoning to the multitarget case. We assume that SNR 
is so high that the first-order moment (the PHD) of the multitarget system is an approximate sufficient statistic: 
fk\k{Xk\Z^''^) = fk\k{Xk\Dk\k)- We then "fill in the question marks" in the following diagram, 

...  ^      f  ^multitarget prediction      f  ^multitarget Bayes' rule      f  > . . . 

...  ,      n ,        .moment prediction??      n       ,        .moment data update??      f)  ^ 
 ^    ^k\k     —*■ ^ J^k+l\k     -^ ^ J^k+l\k+l     -^ ■ ■ ■ 

where the top row portrays the time-evolution of the multitarget Bayes filtering equations 29 and 30; and where the 
downward-pointing arrows indicate the replacement of multitarget posteriors by their corresponding PHD's. Ideally, 
this diagram would be Bayes-closed in the sense of Kulhavy [12] and Iltis [11], meaning that for any k: 
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1. the two time-update paths fk\k -^ fk+i\k -^ Dk+i\k and fk\k -^ Dk\k -^ Dk+i\k yield the same Dk+i\k; 

2. the two data-update paths fk+i\k -^ fk+i\k+i -* J^fc+i|fc+i and fk+i\k ->■ Dk+i\k -* ^A;+i|fc+i yield the 

same Dk+i\k+i', ^^ 

3. Dk+iik is a "best-fit approximation" of fk+i\k, and I>fc+i|fc+i is a "best-fit approximation" of A+iifc+i, in 

some explicitly specified sense. 

If all three of these properties were satisfied, the filter indicated in the bottom row of the diagram would be 
theoretically guaranteed to not diverge. That is, it would always produce exactly the same best-fit Dk\k or 

Dk+i\k that one would get if one could implement the optimal filter in the top row and then compress the respective 
multitarget posteriors into their corresponding first moments. In the approach proposed in this paper, property (2) is 
only approximately satisfied. The PHD filter is based on the following assumption: the random multitarget track-set 
Fkik is approximately equal to the Poisson process (Poisson track-cluster) P^ik that most closely resembles it. By 
definition, T is a multidimensional (spatial) Poisson process with intensity function r>(x) if [48, p. 33], [43, pp. 

86-87], [15, p. 6]: 

1. for all i > 1, r n ^i,..., r n 5i are statistically independent random sets whenever Si,..., Si are mutually 

disjoint bounded subsets; and 

2. the number of elements of  T  in any bounded subset   S  is Poisson distributed:   Pr(|r r)S\ = n) = 

Sl^lfMs):.^ ^here D{S) = Jg D(x)dx is called the intensity measure. 

The belief-mass function of a Poisson process has the form f3{S) = exp {D{S) - N) where N = J D(x)dx, 
the expected number of objects, is given by equation 28. The multi-object moment density function and multi-object 
posterior of a Poisson track-set F^k have the simple forms [6, p. 226]: 

m,ifc(0) = 1,  m,ifc(x)=n ^'^I'^w ^^^^ 

fkikm   =   e-^*lS        fk\k{X) = e-^''l>'llDkik{^) (33) 

Equation 33 tells us that the joint density of the tracks xi,..., x„, given that there are n tracks, is 

A|,(x„...,x„|n.zW) = 1 A„({xa,...,x„}|n,zW) = ^''''p"|r""'u if ^^^ = n^^l^(-^) - 7,„^xa, ...,xn;p, z.--; - —p^^P^^I^^ 
i=l 

where A|fc(xi,..., Xn|n, Z^"^) is the joint posterior distribution of the vector (xi,..., x^) and where Sfc|fc(x) = 

Dk\k{x)/Nk\k is the spatial probability distribution of each track [43, p. 90]. That is, given the number of tracks, 

their locations are independent, identically-distributed random vectors." 

We now choose fk\k so that it is the multitarget distribution of the Poisson-distributed track-cluster Tk\k 
that best approximates the posterior track-set Tj,\k^ in the sense that it minimizes the multitarget Kullback-Leibler 

discrimination [9, pp. 205-215]: 

KUk\k-Jk\k) = //.,.(X|Z('=))log (^^1^) ^^ (34) 

"This fact tells us how to construct Poisson track clusters. Let Xi,X2,... be an infinite sequence of independent, identically 
distributed random track-vectors and let z^ be a Poisson-distributed random integer: Pr(i/ = n) = e-^>'^''N^^Jn\. Then 
^ = {Xi,..., X„ } is a Poisson track cluster, where it is assumed that T = 0 whenever y = 0. 
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Minimization occurs (see section 5.3) when Dk\k{y^) = Dfc|;;(x|Z(*^)). This in turn implies that Nk\k = -A^fcifc 
where Nk\k = J Dk\k{'^\Z^^^)dx is the expected number of tracks at time-step k. Consequently: when we say 
that the first-order moment Dk\k can be propagated in place of the multitarget posterior fk\k, what we are actually 
saying is that we can propagate fk\k in place of fk\k because it is a reasonably good approximation in the sense 
that the track-set Tkik strongly resembles the Poisson track-cluster Fkik- i.e., fk\k —fk\k- 

3.3. The Bayes First-Moment Filtering Equations 

Given these preliminaries, it can be shown [17, Theorem 4], [27] that between measurement-collection times, the 
PHD can be propagated in time, without approximation, using the exact prediction integral 

4+i|fc(y|^^'^) = j [dk+i\k{^)fk+i\k{y\y^) + 6fc+i|fc(y|x)) 4ifc(x|z('=))dx (35) 

where 

(1") 1 - dkj^x\k{y^) is the probability that a target with state x at time-step k will disappear from the scene at 
time-step k + l; 

(2") 6fc+i|fc(y|x) is the PHD of the multitarget density hk^i\k{X\yi) that describes the likelihood tiiat a target 
with state x at time-step k will generate a set X of new targets at time-step fc + 1; 

If the track-set sti-ongly resembles a Poisson track-cluster then it can be shown [17, Theorem 5], [27] that the 
following approximate equation is the Bayes update of the PHD using a new scan Z^+i of data: 

where: 

(3") A'lt+iifc = /£)ft^.l|fc(x|zW)c^x is the predicted expected number of targets at time-step A;-|-l; 

(4") VD is the (state-independent) probability of detection of the sensor, assumed to be large enough that 
PD>1- N;1^^^ for any k; 

(5")AA;+I is the average number of Poisson false alarms per data-scan, and Ck+i{z) is the (state-independent) 
distribution of each of these false alarms; 

(6") bk^MZ^'^) = //(z|x) I),+i|,(x|^W)dx; and 

(7") ^fc+i|fc+i(x|z,Z('=)) = /(z|x) I>ft+i|A(x|Z(^)) I);i+i(z|Z(^))-i is a Bayes'rule-like update of 4+i|fc(x|Z('=)) 
using the observation z. 

It can also be shown [17, Theorem 6] that equation 36 is easily extended to deal with multiple sensors, assuming 
tiiat the observation-sets collected by these sensors are conditionally independent. 

In other words: if SNR is large enough then multitarget detection, tracking, and identification can be ac- 
complished using a process that strongly resembles single-target nonlinear filtering—«wc? that also does not re- 
quire report-to-track association. Rather, data association is essentially replaced by multi-peak extraction. At 
each stage, the PHD filter propagates not only the PHD bk\k{yi\Z'^^'^) but also the expected number of targets 
Nk\k = / Dfc|fc(x|Z(^))(ix. Consequently, estimation of the multitarget state is accomplished by computing the 
nearest integer [Nk\k] in Nk\k and then searching for the [TV^tH.] largest peaks of £)fc|fc(x|Z('=)). 

t* 
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target 2    .. 
starts here 

x-coordinate—► 

target 1 
starts here 

report sigmas 
are all 0.01 
(high SNR) 

target 3 
is stationary 
(targets 1 and 
3 at time of 
38th report) 

Figure 1. Simple Test Scenario. Target 1 enters at upper right of the scene, Target 2 enters at lower left, and Target 
3 is near the center and motionless. Target 1 overruns Target 3 at the time of 38*'' observation. 

3.4. PHD Filter: Preliminary Results 

The purpose of this section is to describe the performance of a preliminary implementation of the PHD filter, as 
applied to a simple model problem. This work is described more fully in recent conference papers [7], [29]. 
The PHD filtering equations 35 and 36 were implemented using a "spectral compression" computational nonlinear 
filtering technique developed at Lockheed Martin Tactical Systems. A simple multi-peak extraction algorithm was 
used to find the AT largest peaks of the PHD at each time-step, where N is the integer-valued expected number of 
targets supplied by the PHD filter. This peak extractor divides the scenario into a quantized grid and searches for 
maximal values. Localization accuracy is thus Umited by the quantization error. 

The PHD filter was applied to the simple three-target model scenario pictured in Figure 1. Two moving targets 
enter the scene from upper right and lower left, whereas a third target is motionless at the center. One target overruns 
the motionless target at the time of the 38*'' observation, generating confusion about target location. The scene is 
observed by a single Gaussian sensor. In keeping with the assumptions that underiie the PHD filter, signal-to-noise 
ratio 15 assumed to be high: a = .OL There are no false alarms, and target number is assumed to be unknown but 
unchanging. A simple instantaneous straight-line motion model is used. With these assumptions, the PHD filtering 
equations 35 and 36 reduce to the simple form: 

■J zeZk+i 

Our results are as follows. 
Figure 2 shows the graph of the PHD at the time of the 35*'' observation. Despite the fact that some confusion 

->.  , ^^tween Target 1 and Target 3 is beginning to occur, the peaks corresponding to the three targets are clearly separated. 
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target 2 

PHD 
value 

y-coordinate 

Figure 2. PHD at 35*'' Time-Step.   Since Target 3 is motionless, the peak corresponding to its location is large 
compared to the peaks for the other two targets. 

Because Target 3 is motionless there is less confusion regarding its position, and so its peak is higher than the peaks 
corresponding to the other two targets. 

Figure 3 shows the tracking performance of the PHD filter throughout the scenario, using a measure of perfor- 
mance called the "Hausdorff multitarget miss distance" [52], [22, p. 46], [9, pp. 137-138]. The Hausdorff distance 
dHaus{G,X) is the multitarget analog of the single-target concept of Euclidean miss distance ||g-x|| between a 
ground-truthtargetg and a track estimate x. It is defined as: 

dHaus{G,X) = m&x{ckiG,X), do(X,G)},        do{G,X) = maxmin ||g-x|| 
g€G xex " 

where G is the set of ground truth targets and X a the set of track estimates. In our case C? = {gi.ga.gs} is the 
indicated ground truth at a particular observation-time, and X = {xi, X2, X3} are the track locations generated by 
the PHD via peak extraction, at the same observation-time. 

Figure 3 shows that, over-all, the PHD filter successfully tracks the targets even though it does not try to associate 
reports with tracks. Tracking accuracy is limited by the quantization error of the peak-extiraction algorithm rather 
than by the PHD, and is approximately a = 0.005. It is good even before and after the time of the 38"* time-step, 
the time of majcimal target-to-target confusion. The large error spikes at the 35*'' and 40*'' observations are caused 
by failures in the peak-extraction algorithm and not the PHD filter itself. (Figure 2 shows, for example, that the 
peak extractor failed at the 35*'' observation even though the three peaks are clearly separated.) In these cases, the 
peak extractor failed to find one of the peaks and assigned two target locations to another peak. 

This experiment demonstrates that the development of good multi-peak exti-action algorithms is critical to the 
successful implementation of a PHD filter. It also shows that, to a great extent, peak extraction plays the same 
role in a PHD filter that report-to-ti-ack association does in a conventional multi-hypothesis multitarget tracker. The 
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Figure 3. TVacking Performance of PHD Filter. The Hausdorff multitarget miss distance (vertical axis) is plotted 
versus observation number. Localization accuracy is good even when Target 1 overruns Target 3 at the time of the 
38*" observation. The two large peaks at the 35*'* and 40*" time-steps are due to peak-extraction failures. 

computational complexity involved in data association is not entirely sidestepped, but rather is partially transferred 
to the peak-extraction process. 

3.5. Open Research Question: Expected Track-Sets 
Many definitions of the set-valued expectation E[r] of a random set T have been proposed [9, pp. 176-177], but 
none of these are applicable to random finite sets—i.e., to simple point processes. At the 1998 GTRI/ONR Workshop 
on Tracking and Sensor Fusion [28] I suggested a definition of a track-valued multitarget expected value of a random 
track-set, based on the idea of transforming finite sets into multinomials (similar to a similar transformation proposed 
earlier [9, p. 179]). This definition of E[r] produces inttiitively acceptable multitarget expectations in special cases. 
For example, if the track-set T = {Xi, ...,X„} is the union of statistically independent tracks Xi,...,Xn whose 
respective expected values are Xi, ...,Xn, then E[r]= {Xi, ...,X„}. However, the approach does not appear to 
be satisfactory in general. The problem of correctly defining E[r] is an open research question. In this section I 
argue (as I did in the 1998 workshop) that any acceptable definition of E[r] should have the following properties: 

• Consistency: if JC is any random vector then 

E[{X}] = {E[X]} 

That is, the expectation of a random track-set that always contains a single random track should itself contain 
only a single track; and this track should be the expected value of the random track: {X} = {X} 

'   • Empty track-sets are ignored:   Let  T be a random track-set and let E[r|r ^ 0]   denote the conditional 
expectation of V given that it is non-empty.  (That is, whereas E[r] is the expectation with respect to the 
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multitarget density fr{X), E[r|r ^ 0] is the expectation with respect to the multitarget density fr\r^0 
defined by fr\rM^) = (^ - M^))~^M^) when X 7=^ 0 and /r|r?t0(0) = O otherwise.) Then 

E[r] = E[r|r^0] 

That is, empty track-sets should provide no contribution to the value of a multitarget expected value. 

• Preservation of geometry: Let ri,r2 he statistically independent tiack-sets. Then 

E[riur2] = E[ri]uE[r2] 

That is, when two random track-clusters are statistically non-interacting, their joint multitarget expected value 
should just be die union of the multitarget expected values of the individual track-clusters. For example, 
{Xi,X2} = {Xi,X2} if Xi,X2 are independent random vectors. 

• Preservationofqffine transformations: Let F be a random track-set and a a constant track-vector and r(x) 
any linear transformation of track-vectors x. Define r({xi,...,Xn}) = {rxi,...,rxn} and X-t-{a} = 
{x 4- a| X e X} for any subset X. Then 

E[T(r) + {a}] = r(E[r])-F{a} 

That is, to Compute the multitarget expected value of a random track-set after a (possibly degenerate) affine 
transformation x 1—>■ r(x) + a of the coordinate system, just apply the same transformation to its expected 
value. For example, {a • Xi -|- a, a • X2 + a} = a • {Xi, X2} + {a} where Xi, X2 are (not necessarily 
independent) random vectors and a is a constant. 

3.6. Related Approaches 

The idea of using a single-target density function ^^1^ (or the probability contours of its graph) as a basis for 
multitarget tracking is a relatively common one. Examples of implemented algorithms are the Naval Research 
Laboratory's TABS (Tactical Antisubmarine-warfare Battle-management System) tracker, Metron Corp.'s Nodestar 
tracker [47] and the "probabilistic mapping" multitarget tracking approach of Tao, Abileah, and Lawrence [49]. The 
PHD filter differs from this work in that it (1) provides a solid theoretical foundation for single-density approaches in 
general, (2) clarifies the relationship between single-density approaches and the optimal multitarget filter, (3) makes 
explicit the theoretical assumptions that implicitly underlie single-density approaches (in particular, the assumption 
of high SNR), and (4) validates Stein and Winter's intuition that the PHD is a "theoretically correct" choice of g^.^,, 
as well as their concept of "weak evidence accrual." Beyond this, the PHD approach leads to new practical insight 
and new implementations because the PHD can be propagated by conventional nonlinear filtering equations. 

The concept of multitarget Bayesian nonlinear filtering (equations 29 and 30) is a relatively new one. If one 
assumes that the number of targets is known beforehand, the earliest exposition appears to be due to Washbum 
[51] in 1987, who used a random measure-based point process approach. When the number n of targets is not 
known and must be determined along with the individual target states, the earliest work appears to be due to Miller, 
O'SuUivan, Srivastava, et. al. [44], [45]. Their very sophisticated approach utilizes solution of stochastic diffusion 
equations on non-EucUdean manifolds. It is also apparently the only approach to deal with continuous evolution of 
the multitarget state. Mahler was apparently the first to systematically deal with the general discrete state-evolution 
case (Bethel and Paras [3] assume discrete observation and state variables). Stone et. al. have provided a valuable 
contribution by clarifying the relationship between multitarget Bayes filtering and multi-hypothesis correlation [47, 
pp. 161-208], [9, p. 32], [22, p. 48]. Nevertheless their approach is, with regrets, best described as "heuristic" 
for reasons described more fully elsewhere [22, pp. 91-93]. Kastella's "joint multitarget probabiUties (JMP)," 
introduced at Lockheed Martin Tactical Systems in 1996, are a renaming of a number of early core FISST concepts 
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(set integrals, multitarget information metrics, multitarget posteriors, joint multitarget state estimators, etc.) devised 
two years earlier [37, pp. 27-28], [25]. Portenko et. al., also using a random measure-based point process approach, 
use branching-process concepts to model target appearance and disappearance [38]. 

Most recently, M. Kouritzin has noted [16] that the theory underlying particle-systems filters also subsumes point 
processes and therefore multitarget tracking as well. In particular, this means that particle system-based multitarget 
nonlinear filters will have very good convergence properties (i.e., for every multitarget observation sequence, the 
particle density will converge almost surely to the actual multitarget distribution). It also means that particle- 
system methods can be applied to single- and multitarget systems whose motion models—e.g., heavy-tail or non- 
differentiable models—are too ill-behaved to be describable by conventional Kolmogorov-Forward (Fokker-Planck) 

equations. 

It should also be pointed out that Mori, Chong, et. al. first proposed random set theory as a potential foundation 
for multitarget detection, tracking, and identification (although within a multi-hypothesis framework) [35, pp. 33- 
37]. Since 1995 Mori has returned to the field and published a number of very interesting papers based on random 

set ideas [32], [33], [34]. 

4. SECOND-ORDER MULTITARGET STATISTICS 

The PHD filter described in section 3 makes use only of the first-order multitarget moment statistic and, in this sense, 
is a statistical analog of single-target, constant-gain Kalman filters such as the a-/3-7 filter. The Kalman filter arises 
when we try to propagate the second-order as well as first-order statistics of a target. The extended Kahnan filter 
(EKF) results when we expand the likelihood functions and Markov densities in Taylor's series, in order to propagate 
second-order approximations of the single-target posterior density function. It is natural to ask whether analogous 
things can be done for multitarget systems. First, can We propagate a second-order approximation of the multitarget 
posterior density (i.e., the PHD and a multitarget covariance) instead of the multitarget posterior itself? If so, we 
would have a statistical multitarget analog of the Kalman filter. Second, can we expand the multitarget likelihood 
function and multitarget Markov density in some kind of "multitarget Taylor's series"? If so, we would have a leg up 
on defining a direct multitarget analog of the EKF. The purpose of this section is to discuss these issues. Our results 
are preUminary, but can be summarized as follows. At this time, it does not appear likely that a computationally 
tractable "multitarget Kalman filter" can be constructed from second-order multitarget moment statistics. However, 
it appears that it might be possible to develop a multitarget analog of the EKF, though the potential computational 
practicality of a "multitarget EKF" remains to be seen. 

The section is organized as follows. In section 4.1 I introduce the multitarget analog of covariance-moment 
statistics, the multitarget covariance density function. Then, in section 4.2,1 discuss the possibility of constructing 
multitarget filters based on second-order multitarget covariance statistics—i.e., statistical multitarget analogs of the 
Kalman filter. In section 4.3 I revisit the EKF and identify a "missing link"—namely, multitarget Taylor's series 
expansions—that must be dealt with before any multitarget analog of the EKF can be constructed. Finally, in section 
4.4,1 introduce a generalization of the concept of a point target—the "point-Poisson track-cluster"—and show how 
it leads to Taylor's series expansions of the multitarget log-likelihood. 

4.1. The Multitarget Covariance Density Function 

In section 2.1.61 introduced the factorial cumulant densities of a point process. Applying equation 19 to the random 
track-set Vf,\j,, we bundle the factorial cumulant densities Cr^|^,(n](xi,..., x„) into a single density function defined 
on a finite-set variable X = {xi,..., Xn} and call it the multitarget covariance density function of the track-set: 



156 

From equation 19 it follows that 

6X s=s ^^ 

where S is the entire state space.  Thus, the multitarget covariance density can, like the multitarget posterior and 
moment density functions, be computed using iterated set derivatives. Likewise, equation 20 becomes 

logC?fc|fc[l + h] = jh""- C,|,(X|ZW)5X 

where as usual h^ = H^ex K^) gi^^" -^ = {xi,...,x„}. As before, we note that CftH;({x}|zW) = 
mfcH;({x}|ZW) = Z)fcH;(x|Z(*)) and we give the second-order covariance 

Cfc|fc(xi,X2|ZW) = Cfc|fc({xi,X2}lZW) 

a special name: it is the covariance i/eAWi/y of the random track-set Fkik- 

As an example, if r^ifc is a Poisson track-cluster then CfcH;(X|ZW) = 0 for all \X\ > 1 [6, p. 226]. 

4.2. Second-Order Filtering 

The PHD filter of section 3.3 was based on the assumption that the PHD is an approximate sufficient statistics for 
the multitarget posterior ff.ik{X\Z^''^). In other words, the track-set r^ifc is assumed,to be approximately Poisson 
and thus the multitarget posterior is approximately the multitarget density function of a Poisson process. Stated in 
the language of multitarget covariances, this is the same thing as insisting that Ck\k{X\Z^'''^) = 0 for all \X\ > 1. 
Suppose that we instead insist that Ck\kiX\Z^^^) = 0 for all \X\ > 2. This means that V^j^ would be the 
formal point process statistical analog of a Gaussian random vector. Such a track-cluster is known in point process 
theory as a "Gauss-Poisson process" [6, 266-267]. Any Gauss-Poisson process is essentially just a Poisson process 
in which each track is replaced by a pair of correlated tracks [6, pp. 247-248]. 

If we were to follow the strategy used in the derivation of the PHD filtering equations 35 and 36, we would 
proceed as follows. We would assume that fk\k{X\Z^^^) is Gauss-Poisson and that, consequenfly, it can be written 
as a combinatorial sum of products of Cfc|jt(xi,X2|Z^*)) and Dk\k{^\Z^''^). Then we would apply the multitar- 
get Markov prediction integral (equation 29) to derive fk+i\k{X\Z^''^) and then compute the first-moment density 
Dk+iiki^lZ^''^) and covariance density Ck+i\k{'x.i,^2\Z^''^). We already know how to determine Dk+i\k{'x.\Z^''^) 
exactiy from equation 35. It turns out that Ck+i\k(.'Xii,'x.2\Z^^^) can be computed by applying this same equa- 
tion to both arguments of Cft|fc(xi,X2|Z(*^)). The difficulty comes with the multitarget Bayes' rule, equation 30. 
We would apply the multitarget Hkelihood and Bayes' rule to get fk+i\k+i{X\Z^'''^^^) and then try to compute 
Z)fe+in.+i(x|Z(^+^)) and C)i.4.i|fc+i(xi,X2|Z('^+-^)). However, the answer to this symbolic computation currently 
eludes solution. Moreover, even if it were completed successfully the approximate Bayes' rule for propagating 
Cfc+i|fc(xi,X2|^(*'^) to Cfc4.i|fc+i(xi,X2|Z('^'^-^)) may be so complex as to be unusable in practice. 

Consequentiy another approach is called for, as suggested in the next section. 

4.3. Basic Idea for a Multitarget EKF 

The usual development of the extended Kalman filter [5, p. 109-111] begins with a sensor measurement and target 
motion model 

Zfc = gfc(xfc) -f Vfc,        Xfc+i = ffc(xfc) 4- Wfc 
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where ffc and gfc are nonlinear vector transformations and V^.W^ are Gaussian random noise processes. These 

models are then linearized: 

gfc(x)     ^     gfc(Xfc|fc_l) + Afc(x-X;,|fc_l), ffc(x)^ffc(Xfc|fc)+Bfc(x-Xfc,fc) 

where ^ (x) = (g^ (x))    denotes the Jacobian matrix of the vector transformation h, evaluated at x = x. 

It is not possible to directly extend this line of reasoning to the multitarget case. For example, suppose that 
two statistically independent targets with states xi and X2 are present, and that in addition to the noise model 
Zfc = gfc(xfc) + Vfc the sensor has no missed detections but its observations are corrupted by an independent 
Poisson false alarm process C^. Then the typical multitarget observation would be: 

Zk = {gfc(xi) + Vfc,i} U {g,(x2) + Vfc,2} U Cfc 

where Vfc,i, Vfc,2 are independent, identically distributed copies of Vfc.   Because of independence, this can be 
converted into a measurement model on random densities: 

This is a multitarget analog of the equation zjt = gfc(x) + V^, but it does not help us very much since it cannot be 
linearized in the multitarget state variable ^ = 6xi + 5x2- 

If we are to generalize the EKF approximation strategy to the multitarget case, we must therefore approach 
it from a different direction. The above nonlinear-Gaussian models can be equivalently expressed in terms of a 
Markov density /fc+i|fc(y|x) and a Ukelihood function Lz,(x) =/fe(zfc|x) whose logarithms are 

logA+i|fc(y|x)   =   logiVH,(0)-^(yrffc(x)fi2fc'(y-ffc(x)) 

log Lz,(x)   =   log NQ,(0) - ^ (zfc - gfc(x))^ Qfc ^ (zfc - gfc(x)) 

Using the EKF approximation, the log-likelihood can be rewritten as 

logL.,(x)   -   log^Q.(0)-2(,-A.(x-4-i) J   ^^   [-Ak{^-±klk-i) 

=   logL^^{±k\k-i) - (zfc - gfc(xftlfc-i))   Qk^Ak (x-Xfcifc_i) 

-i (x - Xfc|fc_i)^ A^Qfc Mfc (x - Xfc|fc_i) 

or, equivalently, as a truncated Taylor's series expansion: 

51ogLz.     ,.        X ,1     d^ogLzk_f^       -> 
logL.,(x) - logL.,(x,|,_a) + g(^_j,^,^_^)(^^l^-i) + 2a(x-x,„_02^"^l'=-^^ 

(37) 

where 

J-if ^     (The logarithm of the Markov density can, of course, be expanded in the same way.) 
f 

i 
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In order to apply this line of reasoning to the multitarget case, we would need to be able to generalize equation 
37 to a similar multitarget equation 

where Zk is the multitarget measurement, X,Xk\k^-^ are multitarget states, and Lz^{X) = fk{Zk\X) is the 
multitarget likelihood function. This cannot be accomplished because the arithmetic difference X - Xfc|;fe_i is 

not defined, and because we do not know how to compute Frechet derivatives §^{Y) of functions F{X) of a 
finite-set variable X. This, in turn, is due to the fact that F{X) is "inherently non-differentiable" because of 
the discrete jumps in target number that occur in the argument X. In the next section, I propose the following 
remedy: extending Lz.iX) to & multitarget likelihood functional Lz^[h] that w differentiable in the function- 
valued argument h with respect to the Frechet functional derivative {dF/dg)[h] defined in equation 10 of section 
^t X •.3. 

4.4. Generalized Targets: Point Track-Clusters 

We propose the following idea: extend the concept of a point target with state x to ihat of a point track-cluster 
with state (a,x). By this I mean a cluster of targets, all of which are co-located at x and the expected number of 
which IS a > 0. If a = 1 then the point cluster (1, x) models a point target. A group of point clusters is just a 
finite set of the form X = {(ai, xi),.... (an, x„)}. In section 2.1.1 we noted (equation 8) that X is mathematically 
equivalent to the density function h = a^5^, + ... + a^S^.. lliis identification allows us, in turn, to inteipret any 
function h{^} as a continuously infinUe collection of point target-clusters—meamng that a point track-cluster is 
located at each point x of state space and the expected number-density of targets in this cluster is /i(x). 

Given this, suppose that we have a single sensor with single-target likehhood function L^, (x) = /fc(z Jx) and 
state-dependent probability of detection pz?(x), which we assume can be extended to a function pD{a, x) of target 
number a as well as target state x. Then I m]l shov/how to define a likelihood functional Lz \h] = h(Z,\h) 
that extends the multitarget likelihood function Lz,{X) = A(Z,|X) and which describes the statistics of the 
observation-sets Zk generated by all targets in the continuously infinite group h of point target-clusters. This then 
leads to the desired multitarget generalization of equation 37: 

^ogLz.iX) - logLz,{Xkik-x) + -/^2S^^L[. ] + 1      dHogLz, 

^k\k-l' 

Where the sum on the right is a Taylor's series expansion in terms of the general functional derivatives (equation 11) 
introduced in section 2.1.3. 

Note: For present puiposes, I am not proposing the use of the multitarget likelihood functional Lz [h] in place 
f *; ^"ISff ^ likelihood function Lz^X). This would entail the replacement of multitarget density functions 
fkik{X\Z^ >) by multitarget density functional /fc|fc[/i|ZW] and the use of functional nonlinear filtering equations 
of the form '^ ^ 

fk+i\k[h\Z^'^]   =   Jfk+i\k[h\g] fkikblZ^'^pg (39) 

where J-Vh is a suitable multi-dimensional generalization of theWieneryi/ncriona/m?egra/[40, pp. 159,186-188], 
[8], [31]. This is because we are searching for estimates that are true multitarget states h = S^'   <i=> Jtu^ rather 

^k\k '^l'' 

I 

i  i 
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1; few 

than abstract functions (PHDs)  h^j,-   If we modeled multitarget systems using PHD's, on the other hand, then 
equations 39 would be the appropriate theoretical approach. 

I also show that the likelihood functional can be approximated as a functional Gaussian distribution 

..(x).x.Nexp(-l/feW-My))',; 

if there is a unique function h = ho that solves the imphcit differential equation 

and if, in addition, the function 

h{y)^{h{y),y) +PD{h{y),y) = 0 (40) 

^2P£M%Z)_^(,„(y),y)>0 (41) 
cT2(y) ho{yf da' 

is integrable and positive-valued for all y. 

In more detail: Suppose that we are given a sensor with single-target measurement model z = g(x) -|- W, 
likehhood function /(z|x) = /w(z - g(x)), and state-dependent probability of detection pn(x). Suppose that 
r is a Poisson point track-cluster with intensity function D(y) where a = / D{y)dy > 0 is the expected number 
of targets. Also, assume that probability of detection is a function pc (a, x) of target number a as well as target 
state X, with PD(1,X) = PD(X). Then it is easily shown (see section 5.4) that the multitarget observation-set is 
also Poisson and that its multitarget likelihood function is 

/(Z|a,x) = e-"P^("'-) n (a • PD(a,x) -/(zlx)) 
zez 

Suppose, next, that we have a collection Af = {(ai, xi),..., (a„, Xn)} of several independent point target-clusters. 
Then the multitarget likelihood function is again Poisson and is (see section 5.5): 

n n 

f{Z\X) = e""^ Yl D{z\X),        D{z\X) = J]aiPD(ai,Xi)/(z|xi),        ax = X)^iP^(«i'^) 
z&Z i=l    . ■»=! 

By analogy, suppose that the number n of point clusters increases continuously without bound in such a manner 
that the empirical distribution S^^ + ... + anS^,^ converges to some positive-valued function h. Then h can 
be interpreted as a continuously infinite family of point track-clusters, such that the point track-cluster located at 
X contains an average number (density) /i(x) of targets. The expected number of targets over the entire space 
is, therefore, a^ = / /i(x)dx if the integral exists. By analogy, say that the likelihood functional describing the 
observations generated by all targets is 

Lz[h] = f{Z\h) = e-''^^^llDM 
z€Z 

where 
D^[h] =  fh{x) pij(/i(x),x) /(z|x)dx,        a[h] = Jh(pc) pD(/i(x),x)d> 
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Notice that logLz[h] is continuous resp. differentiable in h if pD{a,x.) is continuous resp. differentiate in 
a. In fact, application of the functional derivative (equation 10) and a little algebra shows (see section 5.6) that 

^^'■[h]   =    (h{y)^{h{y),y)+po{h{y),y)^my) 

^W   =   h{y)^{h{y),y)+PD{h{y),y) 

51ogL^^^j -i + Ef{^  (My)^(W,y)+P.(W,y) Sy 

In like manner, a little more algebra shows that the second derivative of the log-likeUhood is 

t^I"! = -(Ei^^^^)(MyO^«y.).y.)+P.(My.),y.) 

• (h{y2)^{h{y2),y2) +PD{Ky2),y2)^ 

+ (- + E^) (a^ (My>)^(My:).y.)) +4;P.CKy.),yO 

where we make use of the identity 

A/(/i(u),v) = |{(/.(u),v)<5y(u) 

Equations 40 and 41 directly follow from these results. For, if 40 holds for some h = ho then 

Sy 

for all y and so 

■[ho] = 0 

1       r     TLl      1       r     \u }       1 ^^log^Z* ri,  1   ,   1 ^^OSLZk ri.  1   , 
logLzdh] -logLz.N = 2aF^^ °^ "^ 6a(^r:^f^°^ + - 

If h is sufficiently near ho, the second-order term on the right-hand side of the equation dominates all higher-order 
terms, and the function ho corresponds to an absolute maximum if and only if the right-hand side of the equation 
is always negative. This can be true if and only if equation 41 is true identically. 

5. APPENDIX A: MATHEMATICAL PROOFS 

5.1. Proof: 

We are to show that pr{S) = Gr{ls]- We know that the multi-object density fr{X) of the point process Fisthe 
same thing as the corresponding family of its Janossy densities: /r({xi,..., x^}) = jri^i, •••, Xfc). So, 

°°   1   /" 
Gr[ls]   =   ^I^'jt! / ^■5(^i)'"^s(xfc) jr(xi,...,Xfc)dxi---dxfc 

fc=o   ■ "^ 

=   Eli /  /r({xi,...,Xfc})dxi..-dxfc= f fr{X)5X = priS) 
k=0 
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5.2. Proof: 

We are to show that 

Let 5 be a closed set, let Ex denote an arbitrarily small region surrounding the vector x, and let X{Ex) denote 
its hypervolume (Lebesgue measure). Our proof will be informal and is based on the observation that, in the hmit 
as X{Ex.) -^ 0, the characteristic function Ijs^ strongly resembles a Dirac delta function that has been multiplied 
by a very small postive number: 

l^Jy) = X{Ex) ■ ^^ -> X{Ex) ■ 5x(y) 

Suppose that both the set derivative ^ and the functional derivative ^ exist. Then by the definition of a set 
derivative (equation 22, [22, p. 30], [9, pp. 145-146,150]): 

-57^^^   ~   KE^\o KEy) ~HE^\o X{Ey) 
,.       Gr[ls + lEy]-Gr[ls]        ,.       Gyjls + X{Ey)6y] - Grjls] 

=      lim     .,1, . =    lim     .,„ . 
A(By)\o X{Ey) A(£;y)\o X{Ey) 

liui ^^^^^ ^ ^^^^ ~ ^"^^^^^ - lim ^""^^^ "^ ^'^^^ ~ ^^^^^^ - '^^'^[1.] 
£\o e £-0 e 6y 

5.3. Proof: 

We are to show that K{fk\k; fk\k) is minimized if £'fc|fc(x) = Dfc|ft(x|Z(*)). First, notice that 

K{h\,;U)   =   y'v(X|ZW)log/,|,(X|zW)6X-.|/,|,(X|zW)log(|e-^*l'= fj ^,|,(x)j <5X 

=   const. + iV,|, - j U^,{X\Z^'^) J2 log^ftl*W J -5^ 

However, a bit of algebra shows that 

y I A|fc(X|zW) J] log%(x) J 5X = iV,|fc Jsfc|,(x|zW)log4lfcWdx + iVfe^^ 

where5,|,(x|ZW) = P,|fc(x|Z('=))/iVfc|fcand 4|fc(x|ZW) = £)fc|,(x|ZW)/iV,|fc. So, 

K{fk\k;h\k)   =   const.-iVfc|fc /'sfc|fc(x|.zW)loglfc|fc(x)dx + iVfc,fc -iVfc|fclogiVfc|fc 

=   const.+ A^fc|fc-F!r(sfc|fc,Sfc|fc)+iVfc|fc-A?fc|fc logiVfcifc 

This is minimized when K{sk\k,Sk\k) and Nk\k - Nk\k ^ogjf^k\k are separately minimized, i.e. when Sk\k = Sk\k 

'.is' iiLAlt/^i..  .ft Ki" 
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5.4. Proof 

We are given a sensor with single-target measurement model z = g(x) + V, state space S, likelihood function 
/(z|x) = /v(z - g(x)), state-dependent probability of detection PD(X), and a Poisson track-cluster F with 
intensity function D(y) where a = / D{y)dy > 0 is the expected number of targets. Suppose further that F is 
a Poisson point track-cluster and that the probabiUty of detection poia, x) is a function of average target number a 
as well as of target state. We are to show that if the track-cluster is a point track-cluster, then the observation-process 
generated by it is a Poisson process with intensity function D{z\a, x) = a ■ p£)(a, x) • /(z|x). 

Let u be a Poisson-distributed random non-negative integer with parameter a and let Xi,...,Xi,... be 
independent, identically distributed (i.i.d.) random vectors with distribution 5(x) = D(x)/a. From the footnote in 
section 3.2, we know that T = {Xi, ...,X^} is a Poisson track-cluster with the specified characteristics. Let 0? 
be a random set which takes only the two values 0, S with Pr(0| = 0) = 1 - 9 and Pr(0? = S) = g. Then the 
observation-set E produced by the track-cluster is 

E = U({g(Xi) + Vi}n0f^("'^^)) 
t=i 

where Vi,..., Vi,... are i.i.d.   The corresponding beUef-mass function is 

00 n 

,.     /?s(5)   =   Pr(SC5) = J]p,(n)];]Pr({g(X0+Vi}nCf°("'^^>C5) 
n=0 1=1 

00 n 

=  EP-(") n^^ ({s(^») + Vi} n 0r°("'''*^ c s) 
n=0 i=l 

However, assuming independence of all random quantities we get 

Pr({g(XO-fVjn0f^("'^*>C5)   =   yPr({g(y)-|-VOn0f^("'^)c5)s(x)dx 

=   J{^-PD{a,y)+PD{a,y)PT{s{y) + ViGS))s{y)dy 

=    / (1 - PD{a, y) + PD{a, y) Pz{S\y)) s(y)dy 

where pz{S\y) = fgf(z\y)dz. So, 

MS)   =   Ylpu{n)(fil-pD{y)+PD{y)pziS\y))s{y)dyY 
n=0 ^-^ / 

=   expU / {l-PD{y)+PDiy)pziS\y))s{y)dy-a\ 

This is the belief-mass function of a Poisson observation-cluster. Now assume that the track-cluster is a point cluster, 
i.e. s{y) = Sx{y). Then the belief-mass function becomes 

/3^{S\a,^) = exp(ap£3(a,x) (pz{S\ic) - 1)) 

This is the belief-mass function of a Poisson process with intensity function D(z\a, x) = a • po(a, x) ■ /(z|x), as 
claimed. 
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."/' 
4,^   ' 

5.5. Proof: 

We are to show that 
n n 

f{Z\X) = e""^ J] D{z.\X),        D{7.\X) = J^aiPo(ai,Xi)/(z|xi),        ax = Y^aiPoiahy^) 

The belief-mass function of each point-Poisson process is 

/3i(5) = exp {aiPD{ai, Xi)pz{S\xi) - aiPD{ai,Xi)) 

Since the processes are independent, the belief-mass function of their union is also that of a Poisson process: 

f3{S) = pi{S) • --pniS) = exp ( J]aipij(ai,Xi)pz(5|xi) - J^^ipoiauXi) j = exj>{D{z\X) - ax) 

as claimed. 

5.6. Proof 

We are to show that 

Sy 
[h]   =    (h{y)^{h{y),y)+PD{h{y),y)^f{z\y) 

^[h]   =   h{y)^{h{y),y)+pD{h{y),y) 

^W =  (-i + Et|^)(My)^(My),y)+MMy).y) 

The second equation follows easily from the first, and the third follows from the first and second since 

^y ^y      ttz^y 
. So, we need only prove the first equation: 

6D,.^^ ,.    D,[h + e5y]-DAh]       f A.     1 (/i + S^WPDCMX)+e5y(x),x)/(z|x) \ 

Sy 

Therefore 

f / .     1 h{x)pD{h{x) + e5y(x),x)/(z|x) + eSy{^)pD{h{^) + e(5y(x),x)/(z|x) \ 
J [}^o~e -/i(x)pip(Mx),x)/(zlx) ; 

1 ;i(x)pij(/i(x) -f e(5y(x),x)/(zlx) - /I(X)PD(/I(X),X)/(Z|X) \ ^^ 
i^_^ £ +£<5y(x)pz,(/i(x) + e5y(x),x)/(z|x) ^ 

^^^[/.]   =   |MX)/(Z|X) (^ii^^^P^(Mx) +^^y(x),x) -p.(/.(x).x)>j ^^ 

-F / lim6y(x) PD{K^) + e^y(x),x) /(z|x)dx 

=     /"/i(x)/(z|x)5y(x)^(;i(x),x)dx + y"6y(x)pD(Mx),x)/(zlx)dx 

My)^(^(y),y) + PD(/^(y),y)) /(^ly) 

<5y 
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6. CONCLUSIONS 

In this paper I introduced multitarget moment statistics of arbitrary order, and have tried to illustrate their potential 
importance for multitarget tracking. I emphasized the importance of point process theory to multisensor-multitarget 
detection, tracking, and identification. Despite its neglect in multitarget tracking circles, this theory is the statistical 
foundation for all multi-object problems, and its importance to future theoretical and practical research should not 
be underestimated. The point process literature contains a vast array of results, techniques, and computational 
approaches that await "mining" for application to multitarget problems. Towards that end, I have provided a brief 
but systematic introduction to point process theory, and in particular to the "engineering-friendly" version of it that 
I call finite-set statistics (FISST). 

I showed how a viable Bayes nonUnear filter can be devised for the first-order multitarget moment (the "probabil- 
ity hypothesis density" or "PHD"), thus yielding a computable, systematic multitarget tracking approach that avoids 
report-to-track association. I described preliminary simulations that suggest its possible benefits and possible chal- 
lenges in practice. Chief among the limitations, other than the necessity for high signal-to-noise ratio, is the need 
for good multi-peak extraction algorithms. This is because multi-peak extraction largely replaces report-to-track 
association in a PHD multitarget filter. I also pointed out an open research question: the problem of defining a 
track-valued (rather than density- or measure-valued) first-order multitarget moment statistics. 

I initiated a study of the second-order statistics ofmultitarget systems. While this study is preliminary, it suggests 
possible directions for research. I described the second-order moment and covariance statistics of a multitarget 
system, and indicated why it does not appear possible to develop a computationally tractable multitarget tracking 
filter based on these statistics at this time. However, I also described a potential path to a multitarget generalization 
of the Kalman filter. This approach depends upon (1) being able to extend any multitarget likelihood function to 
a so-called "multitarget log-likelihood functional," and (2) expanding this functional in a Taylor's series, using a 
generalization of the HSST set derivative called the functional derivative. 
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